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Abstract
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a
controllable prism for an incident spin. The device is a large quantum well where Rashba and
Dresselhaus spin–orbit interactions are present and controlled by the plunger gate potential, the
electric field and the barrier height. A totally destructive interference can be manipulated
externally between the Rashba and Dresselhaus couplings. The spin-dependent
transmission/reflection amplitudes are calculated as the control parameters are changed. The
device operates as a spin prism/converter/filter in different regimes and may stimulate research
in promising directions in spintronics in analogy with linear optics.

(Some figures in this article are in colour only in the electronic version)

The controllability of spin has been of crucial importance
in the development of spintronics device physics since the
proposal of Datta and Das [1] in the 1990s. Although the
Datta–Das spin FET has not been experimentally realized yet,
the research on spintronics devices based on nonmagnetic
and magnetic semiconductors is continuing [2]. In most
of the theoretical and experimental works the Rashba (R)
spin–orbit coupling (SOC) [3] is the basic mechanism to
manipulate the electron spin [4] and in some others Rashba
and Dresselhaus [5] (D) SOCs are considered [6, 7]. Some
other proposals have been made on SOC-based devices in
larger quantum circuits utilizing additional effects such as the
Aharonov–Bohm and the Aharonov–Casher effects [8]. These
theoretical and experimental proposals have been discussed in
many reviews [9].

Recently, a mechanism has been suggested corresponding
to a spin analog of the optical Snell’s law [10]. The idea is
the splitting of an incident spin-1/2 state into two angularly
resolved spin-dependent components. In that work, the
interface of two nonmagnetic semiconductors with different
SOCs (only Rashba type was considered) in the conduction
band was used for creating a spin-dependent refraction. The
ideas in [10] found many applications, among which are
the spin-dependent negative refraction [11] and perfect spin
filtering across a semiconductor tunnel barrier [12]. In
this paper we extend this idea of spin-dependent refraction
to a theoretical device with a large number of control
parameters and demonstrate that the range of the diffraction
angles between the propagating spin–orbit modes can be

controlled externally. We identify three distinct types of
propagation at large angles of incidence. Additionally,
including the Dresselhaus SOC is a ‘must’ in many zinc
blende structures [13–15]. In the presence of both SOC
contributions, it is shown that a totally destructive interference
can be externally manipulated between the Rashba and the
Dresselhaus contributions.

One of the main result of this simple work is that the
control parameters can be tuned to obtain a rich number
of configurations such as the total reflection of both spin–
orbit states, the reflection of one and the transmission of
the other, the transmission of both as well as a nontrivial
spin-independent diffraction. The other results are concerned
with the controllability of the spin-dependent transmission and
reflection amplitudes.

The model. We consider a simple quantum mechanical
system as shown in figure 1 consisting of a large quantum
well (QW) in the region |x | � b between two strong spin-
independent potential barriers at b � |x | � a. The R&D
spin–orbit couplings are effective within the QW, and the
former is tunable by an electric field Ez in the z direction.
The system is translationally invariant in the y direction.
The SOCs and Ez are effective only within the QW. The
electrons from the, say left, reservoir impinge on the interface
x = −a with their wavevectors �Q = (Qx , Qy). Here it
is demonstrated that, despite its simplicity, scattering through
this structure is quite rich in physics due to the effects of the
control parameters Ez , the barrier height V0, the plunger gate
potential VP as well as the parameters of incidence, i.e. the
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Figure 1. The QW model considered. The R&D spin–orbit interactions and the electric field along the z direction are confined within the well
−b � x � b (shaded area) and zero outside. The interfaces with the potential barriers at x = ±a and ±b are considered to be
spin-independent. The spin dependence of the waves are described by (A↑, A↓) for the left incident, (B↑, B↓) for the reflected, (I↑, I↓) for the
transmitted and (J↑, J↓) for the right incident waves. Note that we only consider left incidence and (J↑, J↓) = 0.

Figure 2. The diffraction and the reflection of the incident wave in the QW (looking down in the negative z direction in figure 1). The angle of
incidence is φi and the angles of diffraction within the QW are φ(±)

w corresponding to both + and − modes. Note the decomposition of the
transmission amplitudes I↑ and I↓ in I (+) = I (+)

↑ + I (+)

↓ in the transmission of the + spin–orbit branch and I (−) = I (−)

↑ + I (−)

↓ in the
transmission of the − spin–orbit branch.

energy E = h̄2 Q2/(2m∗) < V0, the angle of incidence
φi = tan−1(Qy/Qx) within the xy plane and the initial spin
configuration of the electrons. In this paper, we assume zero-
conductance conditions and an additional tunable source–drain
potential is not considered.

The device is represented by a 4 × 4 unitary S-matrix:

⎛
⎜⎝

B↑
B↓
I↑
I↓

⎞
⎟⎠ = S

⎛
⎜⎝

A↑
A↓
J↑
J↓

⎞
⎟⎠ (1)

where Q = | �Q| and in a certain incident spin state. Here
A↑, A↓ (B↑, B↓) are the partial spin amplitudes on the Bloch
sphere of the left incident (reflected) electron and I↑, I↓
(J↑, J↓) are those of the right incident (reflected) electron. The
electron wavefunctions on the left and right are given by

�(�r) =
∑

σ=(↑,↓)

[
Xσ ei �Q·�r + Yσ ei �̄Q·�r

]
|σ 〉 (2)

where �̄Q = (−Qx , Qy). We assume that the electrons are
incident from the left and the amplitudes of the right incidence
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Figure 3. (Color online) The solution of equation (2) for φ(+)
w (red solid circles) and φ(−)

w (green hollow circles) as φi , Ez , VP and E are
varied. The solutions yield total propagation of the QW modes. Dashed lines in φ(±)

w correspond to the 45◦ line.

(J↑, J↓) are considered to be zero. Under this condition
the coefficients (I↑, I↓) will be termed as the spin-dependent
transmission coefficients. For the incident and reflected waves
on the left barrier we have Xσ = Aσ , Y = Bσ and for
the transmitted one Xσ = Iσ with Yσ = Jσ = 0. The
wavefunction within the spin-independent barriers (b � |x | �
a) is exponential whereas, in the QW (|x | � b), it is described
by a superposition of the eigenstates of the Hamiltonian written
in the spin basis (|↑〉 |↓〉):

HQW = h̄2k2

2m∗ +
(

0 −iαRk− + αDk+
iα∗

Rk+ + α∗
Dk− 0

)
+ eVP

(3)
where m∗ = 0.067me, where me is the electron’s rest mass.
The R&D SOCs are given by αR = r 6c6c

41 Ez and αD =
−b6c6c

41 〈k2
z 〉 for the conduction band as given, for instance,

in [14], by the band theory estimates in the proper growth
direction with r 6c6c

41 	 117e Å
2

and b6c6c
41 = 27.2 eV Å

3

for InAs and r 6c6c
41 	 523e Å

2
and b6c6c

41 = 760 eV Å
3

for
InSb. In this work we use the InAs parameters. Considering
a sample thickness in the z direction W 	 60 Å we have
〈k2

z 〉 	 (π/W )2 = 2.7 × 10−3 Å
−2

. The wavefunction within
the QW (i.e. |x | � b) is then

�QW(�r) =
∑

λ=(+,−)

[
Eλei�k(λ) ·�r + Fλei�̄k(λ)·�r

]
|λ〉 (4)

where �k(±) = (k(±)
x , k(±)

y ), �̄k(±) = (−k(±)
x , k(±)

y ) and Eλ, Fλ

are the amplitudes of the right moving and the left moving

waves with λ = ± corresponding to the index of the
eigenstates of equation (3) given by

|λ, �k(λ)〉 =
(
|↑, �k(λ)〉 + λe−iφ(λ)

so |↓, �k(λ)〉
)/√

2. (5)

The wavevectors �k(±) of the spin–orbit modes as well as
the phase φ(λ)

so within the QW have to be determined by the
boundary conditions at the interfaces (see equation (6) below).

The refraction of the incident electrons. The time-
independent quantum states in the QW, where R&D spin–
orbit couplings are present, are represented as superpositions of
standing waves with wavevectors �k(±). Due to the translational
invariance along the y direction, the wavevector in this
direction is conserved along the interfaces, i.e. Qy = k(+)

y =
k(−)

y . The spin–orbit modes that propagate through the well are
then determined by

E = h̄2 Q2

2m∗ = h̄2(k(±))2

2m∗ ± |αso(φ
(±)
w )|k(±) + eVP

αso(φ
(±)
w ) = eiφ(±)

so

√
(α2

R + α2
D) − 2αRαD sin 2φ

(±)
w

sin φ(±)
w = Qy/k(±)

(6)

where e = −|e| is the electron charge, αso(φ
(±)
w ) is the

combined R&D-type SOCs given by the coupling strengths αR

and αD, respectively [14, 15], k(±) = |�k(±)| and 0 � φ(±)
w �

π/2 are the magnitudes of the wavevectors and the angles of
diffraction, respectively, within the QW. Equation (6) solely

3
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Figure 4. (Color online) Same as in figure 3 for VP = 0. The solutions yield propagation of the − mode and total reflection of the + mode for
large φi .

depends on the translational invariance along the y direction
and the energy conservation which can be found independently
from the reflection and transmission (TR) amplitudes. We
therefore solve these equations to determine the angles of
diffraction within the QW which then enter in the calculation
of the TR amplitudes (which we consider later below). The
first expression in (6) is the energy conservation, the second
is the complex SOC including the Rashba (αR) and the
Dresselhaus (αD) contributions, and the third one is the angle of
diffraction within the QW based on the translational invariance
in the y direction. The phase of the complex spin–orbit
coupling constant αso described by the second equation in (6)
is determined by

tan φ(±)
so = −αR/αD + tan φ(±)

w

−(αR/αD) tan φ
(±)
w + 1

. (7)

In our calculations, all lengths are scaled by Q0 and all
energies by E0 = h̄2 Q2

0/(2m∗), where Q0 is defined to be
the reference Fermi wavevector of free electrons in 2D with
concentration ne 	 1011 cm−2. For these values Q0 =√

4πne 	 0.01 Å
−1

and the corresponding energy reference
scale is E0 	 6 meV. For an electric field Ez = 150 kV cm−1

(which we consider as the reference electric field by which Ez

is scaled), and for | �Q| = Q0, we find that the R&D spin–orbit
energy scales are ER = αR Q0 	 1.7 and ED = αD Q0 	
−0.76 meV, which are considerably smaller compared to the
corresponding energy scale E0. The dimensions of the QW in

the x direction are considered to be 2a = 70 and 2b = 60 nm.
The barrier height is fixed at V0/E0 = 6. In this work, the
tunable parameters are varied in the range 0 � E/E0 � 5.8,
−2.0 � Ez/(150 kV cm−1) � 2.0 and −2.0 � Vp/E0 �
2.0. Despite the fact that the energy scales of the R&D
SOCs are small with respect to the energy of the incident
electrons, its effects on the spin-dependent refraction and the
transmission/reflection amplitudes are nonnegligible.

The wavevectors �k(±), the diffraction angles φ(±)
w and the

spin–orbit phase φ(±)
so are found by the solution of the nonlinear

equations in (6). The resulting modes |λ, �k(λ)〉, (λ = ±)

described by equation (5) are not orthogonal as a result of
k(+) �= k(−) and φ(+)

w �= φ(−)
w . The initial spin state is then split

into a superposition of the modes in equation (5), with each
mode exposed to a different SOC strength self-consistently
determined by equation (6) and yielding different propagation
directions as schematically shown in figure 2. Based on [10],
we call this device a controllable spin prism. What makes this
proposal interesting is that the diffraction within the QW and
hence the transmission through the device can be determined
not only by the conditions of incidence fixed by φi , E and
the initial spin configuration, but also precisely controlled
externally by Ez , VP and V0. In particular, the diffraction of
the spin–orbit modes within the QW is controllable using VP,
i.e. for a given set of other control parameters, both modes
propagate for sufficiently large 0 < VP (see figure 3), the +
mode is totally reflected for small VP and large φi (figure 4)
and both modes are totally reflected for large VP < 0 and large
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Figure 5. (Color online) Same as in figure 3 for VP/E0 = −1.2. The solutions yield total reflection of both modes for large φi .

φi (figure 5). We also observe that, for small E and VP, the
two solutions are considerably different and for large values of
these parameters they converge to a single solution (see plots
of φi versus VP and φi versus E in figures 3–5).

An interesting consequence of the simultaneous presence
of the R&D couplings is in the dependence of αso on the
diffraction angles φ(±)

w , implying that the different spin–orbit
modes propagating within the QW are subjected to different
SOCs. At a fixed value of Ez < 0 corresponding to
αR = αD �= 0, the solutions can be forced to yield a
completely destructive interference between the Rashba and
the Dresselhaus couplings, i.e. |αso| = 0. This value can be
found to be Ez/(150 kV cm−1) 	 −0.42 by using the SOC
strengths for InAs specified below equation (3). Inspecting
equation (6) it can be seen that this particular configuration is
obtained when φi , VP and E are related by

sin φi =
√

E + |e|VP

2E
. (8)

As the result, two spin–orbit modes are forced to diffract
independently from spin at φ(±)

w = π/4. In this case, the
incident spin state transmits through the device unchanged.
This feature is present in the φ(±)

w versus Ez plots in figures 3
and 5 where the two solutions meet. For the E and VP values
used, those incidence angles supporting spin-independent
transmission, i.e. |αso| = 0, are φi/π 	 0.29 in figure 3 and
φi/π 	 0.19 in figure 5. Other applications of the condition

αR = αD have been studied previously considering normal
incidence [6]. On the other hand, when φi , VP and E do
not respect equation (8), the SOC can still be minimized at a
nonzero value and the interference between R&D contributions
is partially destructive, yielding a small splitting φ(+)

w −φ(−)
w �=

0 as shown in the φ(±)
w versus Ez plots in figure 4. From

equation (6) we also conclude that, for E − eVP 	 0 and
positive, the + mode is totally reflected for nonzero angles of
incidence. The − mode is transmitted respecting sin φ(−)

w 	√
eVP sin φi/|αso(φ

(−)
w )|. For large and negative VP or small

αso this mode is also totally reflected. In this respect, a variety
of spin selective transmissions can be managed even at small
angles of incidence.

The relative optical phase. Another consequence of
φ(+)

w �= φ(−)
w and k(+) �= k(−) is that there is a significant

relative optical phase difference between the + and the −
modes. In the geometry of figure 2 this can be easily found
to be

�φopt

Qb
=

[
k(+)/Q

cos φ
(+)
w

− k(−)/Q

cos φ
(−)
w

]
− sin φi [tan φ(+)

w − tan φ(−)
w ]
(9)

where the terms proportional to sin φi are the contributions
from the transmitted region on the right, and the other terms
are those within the QW. As shown in figure 6, �φopt can
be very large for large angles of incidence and a significant
interference can be observed between the partial amplitudes of

5
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Figure 6. (Color online) �φopt as φi , Ez , VP and E are varied for two different parameter sets. The parameters in each plot (excluding the
variable on the horizontal axis) are VP/E0 = 1, E/E0 = 3.64, φi = 0.18π, Ez/(150 kV cm−1) = −0.8 for the red circles, and
VP/E0 = −1.2, E/E0 = 3.64, φi = 0.18π, Ez/(150 kV cm−1) = 1.2 for the green diamonds.

the transmitted state. The two different parameter sets used
are indicated in the figure captions. The data indicated by the
green diamonds refer to the same parameters used in figure 5.
The point corresponding to αR = αD at Ez/(150 kV cm−1) 	
−0.42 in the φw versus Ez in that figure yields �φopt = 0. In
this case the two spin–orbit modes have the same wavevector
and the diffraction angle, hence they share identical optical
paths. The other data corresponding to the red circles are
chosen such that equation (8) is satisfied at two different points,
the first being at VP/E0 = 1, φi = 0.3π , as shown in the upper
left plot, and the second being at VP/E0 = −1.2, φi = 0.18π ,
as shown in the upper right one. All zeros of the optical phase
again correspond to the solutions of (6) where |αso| = 0.

The transmission and the reflection amplitudes. The
diffraction angles φ(±)

w found by the solution of equation (6)
affect the scattering states via the boundary conditions which
are encoded in the TR amplitudes (B↑, B↓, I↑, I↓). The
wavefunction and the spin-dependent current are conserved
across the interfaces via [10]:

�(�r)|n+1
n = 0,

[
ih̄∂x

m∗ + αso(�r)σy

]
�(�r)

∣∣∣∣
n+1

n

= 0 (10)

where n and n + 1 represent two consecutive media along
the x direction, as shown in figure 1, and �(�r) denotes the
wavefunctions of the two neighboring media. We consider
that the potential barriers at b � |x | � a are spin-
independent and the R&D SOCs are nonzero only within

the QW between |x | � b. Satisfying equation (10) and
multiplying the transmission matrices of each region, and
converting the T -matrix into a unitary S-matrix the TR
amplitudes I↑, I↓, B↑, B↓ in equation (1) are obtained. The
TR amplitudes are examined in figure 7 as a function of the
parameters of incidence φi , E for fixed Ez, VP, V0 and A↑ =
1, A↓ = 0. The plots, starting from the top left corner, respect
the order in the counter-clockwise sense with B↑: the reflected
up spin amplitude, B↓: the reflected down spin amplitude,
I↓ = I (+)

↓ + I (−)
↓ : the transmitted down spin amplitude

including the contributions of both partial amplitudes I (±)
↓

and, I↑ = I (+)
↑ + I (−)

↑ : the transmitted up spin amplitude
again including the contribution of both partial amplitudes
I (±)
↑ . This particular decomposition of the partial amplitudes

is used for the purpose of identifying the spin preserving and
flipping processes. In the plots, B↑, B↓, I↑, and I↓ include
many resonant features identified within the range of initial
parameters 5.4 � E/E0 � 5.8 and 0.25 � φi/π � 0.35
at VP/E0 = 0.4 and Ez/(150 kV cm−1) = 1.6.

In figure 7 a variety of different processes is present
such as strongly spin-preserving or spin-flipping transmissions
and reflections at different values of the incidence and the
control parameters. In this variety, we will only examine
below strongly spin-flipping transitions. In particular, sharp
resonances are observed in figure 7 at (φi/π 	 0.3, E/E0 	
5.55, 5.6, 5.64, 5.66, 5.72) all yielding strong spin-flipping
transmissions with 0.9 � |I↓|, with other TR coefficients being

6



J. Phys.: Condens. Matter 21 (2009) 026016 T Hakioğlu

Figure 7. (Color online) The magnitudes and phases of the transmitted state against the parameters of incidence E/E0, φi/π . Here
Ez/(150 kV cm−1) = 1.6, Vp/E0 = 0.4, V0/E0 = 6. The figures depict (B↑, B↓, I↓, I↑), respectively, starting from the upper left corner in
the counter-clockwise direction. The vertical boxes on the right of each figure indicate the magnitude of the reflection/transmission
coefficients, and the counter-clockwise angle of the arrows with respect to the positive x direction is the phase of the respective amplitudes. In
the calculations we assumed that the initial electron is spin-polarized in the |↑〉 state.

much weaker. The phases of the corresponding transmission
amplitudes are depicted by green arrows superimposed on the
figure. The overall reference phase is the same in all plots. The
phases of the TR amplitudes are strongly related to the φ(±)

w

via equation (5) and the boundary conditions. It is observed
that the phase of the amplitudes has a weak dependence on
the incident energies in the range 5.4 � E/E0 � 5.8 close
to the barrier height but a strong dependence on the angle
of incidence. These results are consistent with the weak
dependence of φ(±)

w in figures 3–5 on the incidence energy
within the same range and a strong dependence on φi .

We now analyze one of these strongly spin-flipping
resonances in figure 7 at (φi/π 	 0.3, E/E0 	 5.6). The
vicinity of this resonance is depicted in figure 8 as a function
of the electric field and the plunger gate potential in the ranges
1.4 � Ez/(150 kV cm−1) � 2.0 and 0.2 � VP � 0.6. The
φi/π 	 0.3 , E/E0 	 5.6 resonance is confirmed here at
Ez/(150 kV cm−1) 	 1.6 and VP/E0 	 0.4. Additional
resonances are observed in a closely spaced array as the electric
field is changed within this range. The corresponding phases
of the TR amplitudes are depicted by green arrows similarly
to figure 7. Here we observe a stronger dependence of the
phase of the amplitudes on Ez and VP. These results are
expected again within the scope of figures 3–5 where a strong
dependence of φ(±)

w is observed on VP and Ez within the ranges
0.2 � VP � 0.6 and 1.4 � Ez/(150 kV cm−1) � 2.0,
respectively.

In this work, evidence is presented for externally
controlling the spin-dependent refraction of an incident spin
state traversing a medium with Rashba and Dresselhaus-type
spin–orbit couplings. We considered a symmetric bar-shaped
sample with a translational invariance in the y direction. As
a result, the transmitted partial waves propagate in parallel
directions. On the other hand, it is strongly desirable to
angularly separate the transmitted partial amplitudes much like
in Newton’s optical prism. This is possible if the translational
invariance is weakly broken by, for instance, a triangular
geometry. If the size of the incident wave is much smaller
than the lateral size of the device, the theoretical results
presented here are unchanged and, as a bonus, it becomes
possible to angularly separate the transmitted partial waves.
Another important requirement for the device application is the
independence of the diffraction angle from the energy of the
incident electrons. This requirement is fulfilled if the incident
energy of the particles is sufficiently large (lower right plots in
figures 3–5). We also observe that spin-flipping processes are
more efficient with a yield of nearly 100%, especially when the
electron energy is close to the barrier height.

The controllable spin prism proposed here can also be
examined for smaller QWs and different ranges of control
parameters than studied here. The key here is the presence
of the spin-independent resonant transmission states with
sufficiently high energies. Under the SOC, those incident
states which are within a certain neighborhood (determined

7
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Figure 8. (Color online) The transmission magnitudes and phases against Ez/(150 kV cm−1) and VP/E0. Here E/E0 = 5.6, φi = 0.3π . The
plots are in the same order as in figure 7.

by the SOC energy splitting) of the spin-independent resonant
transmission energies are transmitted and their spin orientation
is determined by the QW width as well as the strengths of
the electric field and the plunger gate potential. An important
point which is not included in our model is concerned with
the presence of many electrons in the QW. The many-body
Coulombic effects have been analyzed in the scope of the
mean-field approximation by including the Coulomb effects
in the form of a charging energy. It is found that [16] in
the presence of nondegenerate levels (as in here) the presence
of the charging energy in the QW shifts the position of the
resonant peaks but also introduces an anomalous π -shift in the
transmission amplitudes at the peak positions [17].

Yet another important constraint in the experimental
feasibility of the device is concerned with the spin and
momentum relaxation of the electrons due to the presence
of electron–electron correlations, scattering off impurities
and phonons. Due to the spin–orbit coupling present, the
spin relaxation is strongly influenced by the momentum
relaxation. There are detailed experimental results using
high precision time-resolved absorption spectroscopy in the
measurement of the spin relaxation times on the semiconductor
heterostructures [19]. The experiments cover a large range of
temperatures (4 K < T < 300 K), electron energies (1 meV <

E < 140 meV) and sample widths (6 nm < 2b < 20 nm).
The experiments were also made in ambient conditions for the
carrier density and found that the spin relaxation is not strongly
dependent on the carrier concentration (see the third reference
in [19]). In these materials the major source for spin relaxation

is found from the quadratic temperature dependence of the spin
relaxation rates to be a D’yakonov–Perel’ mechanism [9, 19]
at high temperatures, i.e. 10 K � T and a Bir–Aharonov–
Pikus mechanism at sufficiently low temperatures, i.e. T �
10 K. The measured times vary from 10−2 to 1 ns (and
even longer) depending on the temperature, the confinement
energy, the electron concentration and the size of the QW. As
the QW size decreases, the spin relaxation rate increases as
a function of the confinement energy [19]. Combining the
main results of these experimental works together we have
that, in large undoped QWs, as considered in this work, and
in the absence of magnetic field, the spin relaxation time is
expected to be of the order of 500 ps at low temperatures
(T � 30 K) which drops to about 200 ps at about T = 100 K
(last reference in [19]). On the other hand, a typical electron
dwelling time within the large inversion asymmetric medium
in our model can be calculated for a typical electron density
ne � 1011 cm−2 and the sample width 2b = 60 nm to be of
the order of 1 ps. These results indicate that the electron spin is
far from relaxing even at room temperatures and high electron
energies (less than the barrier height (35 meV in our case))
in scattering through such a tunneling device. As a result the
electron wavefunction is expected to remain coherent. These
conclusions may relax some of the experimental constraints on
the operational conditions in the realization of these devices
including those of the controllable spin prism studied here.

The results presented in this work may lead to further
analogies with other linear optical and photonic devices. In this
context, we can think of the spin analogs of lenses, partially
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transmitting/reflecting mirrors, spin beamsplitters, as well as
nanospheres, nanodiscs and nanorings. Hence, the controllable
spin prism may stimulate experimental and theoretical work
in a rich branch of spintronics device physics inspired by the
linear optics and the photonics.
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